Acute Coronary Syndrome
Unstable Angina & Non-STEMI

Saket Girotra MD, SM
Cardiovascular Medicine
Disclosures

- Member, Clinical Working Group, AHA Get With The Guidelines-Resuscitation
- Member, Cath PCI and CART-CL R&P Committee
- Liaison for the Interventional Cardiology Section, ACC
- Guest Editor, JAHA and Circ Outcomes
Myocardial necrosis caused by an unstable ischemic syndrome most often due to plaque rupture, most often accompanied by typical chest discomfort, EKG changes, and a rise/fall in biomarkers.
ACS: Pathogenesis

- Plaque rupture or erosion of vulnerable fibrous cap
- Platelet activation/thrombin
- Intracoronary thrombosis
- Cell necrosis, cardiac enzyme release
Platelets & Coagulation

Franchi et al. Nature Reviews Cardiology 2017
What is an MI in 2020?

Cardiac Injury?

Acute
Rise and/or fall in cTn

Ischemic Mechanism?
History, ECG, echo, etc

yes

Picture c/w plaque rupture?

Type I MI

Precipitant?
Anemia, HTN urgency, arrhythmia, etc

Type II MI

no

Chronic
Flat but elevated cTn

Think structural heart disease, renal disease

Non ischemic acute injury
PE, CHF

Adapted from ACC SAP - James De Lemos
Epidemiology of Acute MI

Figure 1. Age- and sex-adjusted incidence rates of acute MI, 1999 to 2008. I bars represent 95% confidence intervals. MI indicates myocardial infarction; STEMI, ST-elevation myocardial infarction. Reprinted with permission from Yeh et al. (14).
MINOCA

- Spontaneous coronary artery dissection
- Coronary vasospasm
 - Prinzmetal’s angina
 - Cocaine
- Takotsubo cardiomyopathy
- Myocarditis
- Coronary embolism
Coronary embolism
RISK STRATIFICATION

1. What is the likelihood that symptoms are due to plaque rupture?

2. What is the likelihood of a bad outcome?
Short term risk of death

- Accelerating symptoms
- Hemodynamic instability
- Dynamic ST-segment deviation (not TWI)
- + cardiac biomarkers
- Ventricular arrhythmias
Risk Scores

TIMI
1) age ≥65 years 2) ≥3 risk factors 3) known coronary stenosis of ≥50% 4) ST-segment deviation 5) ≥2 anginal events in 24 hours 6) use of aspirin in prior 7 days 7) elevated troponin
Early Invasive v. Conservative
High Risk ACS

Death, MI, Rehosp for ACS at 6 Months

O.R 0.78
95% CI (0.62, 0.97)
p=0.025

Cannon NEJM 2001
Early invasive vs. conservative

<table>
<thead>
<tr>
<th>Biomarker Status</th>
<th>No. of Individuals</th>
<th>Death, MI, or Rehospitalization With ACS Events, No.</th>
<th>Odds Ratio (95% CI)</th>
<th>Favors Invasive Strategy</th>
<th>Favors Conservative Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Invasive Strategy</td>
<td>Conservative Strategy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomarker Positive</td>
<td>550</td>
<td>550</td>
<td>118</td>
<td>156</td>
<td>0.67 (0.50-0.88)</td>
</tr>
<tr>
<td>Biomarker Negative</td>
<td>743</td>
<td>743</td>
<td>152</td>
<td>163</td>
<td>0.94 (0.61-1.44)</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomarker Positive</td>
<td>1392</td>
<td>1353</td>
<td>260</td>
<td>382</td>
<td>0.56 (0.46-0.67)</td>
</tr>
<tr>
<td>Biomarker Negative</td>
<td>1126</td>
<td>1168</td>
<td>229</td>
<td>300</td>
<td>0.72 (0.51-1.01)</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biomarker Positive</td>
<td>1942</td>
<td>1903</td>
<td>378</td>
<td>538</td>
<td>0.59 (0.51-0.69)</td>
</tr>
<tr>
<td>Biomarker Negative</td>
<td>1869</td>
<td>1911</td>
<td>381</td>
<td>463</td>
<td>0.79 (0.58-1.06)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ST-Segment Deviation</th>
<th>Favors Invasive Strategy</th>
<th>Favors Conservative Strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST deviation present</td>
<td>671</td>
<td>667</td>
</tr>
<tr>
<td>ST deviation absent</td>
<td>859</td>
<td>864</td>
</tr>
<tr>
<td>Men</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST deviation present</td>
<td>1561</td>
<td>1559</td>
</tr>
<tr>
<td>ST deviation absent</td>
<td>1938</td>
<td>1932</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST deviation present</td>
<td>2232</td>
<td>2226</td>
</tr>
<tr>
<td>ST deviation absent</td>
<td>2797</td>
<td>2796</td>
</tr>
</tbody>
</table>
Risk Stratification

Unstable angina or NSTEMI diagnosis

- Very high risk: Clinical instability*
 - Immediate invasive <2 h
- High risk: GRACE >140, TIMI ≥4
 - Early invasive 2–24 h
- Intermediate risk: GRACE 109–140, TIMI 2–3
 - Delayed invasive 25–72 h
- Low risk: GRACE <109, TIMI ≤1
 - Medical/non-invasive strategy

If at non-PCI-capable hospital
- Very high risk: immediate transfer to PCI-capable hospital
- High risk: same-day transfer
- Intermediate risk: transfer for PCI within 72 h
- Low risk: transfer if pursuing invasive treatment

Clinical instability*, rise in cTn, or ECG changes
- Invasive evaluation + Non-invasive ischaemic testing

Reed et al Lancet 2017
Medical Management
Platelets & Coagulation

Franchi et al Nature Reviews Cardiology 2017
Aspirin

Class I therapy

- 162-325mg

- Rapidly inhibits thromboxane A₂ production

- ~50% reduction in death or MI in ACS

- Aspirin allergic- use clopidogrel

- Low dose vs. high dose for long-term prevention??
AHA/ACC Class I- All patients with NSTE-ACS without contraindications who are treated with either an early invasive or ischemia-guided strategy

<table>
<thead>
<tr>
<th>P2Y12 inhibitors</th>
<th>Load</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clopidogrel</td>
<td>300 mg/ 600 mg</td>
<td>75 mg daily</td>
</tr>
<tr>
<td>Prasugrel*</td>
<td>60 mg</td>
<td>10 mg daily</td>
</tr>
<tr>
<td>Ticagrelor</td>
<td>180 mg</td>
<td>90 mg BID</td>
</tr>
</tbody>
</table>
Clopidogrel – CURE trial

Cardiac Death, Nonfatal MI, or Stroke at 1-year

- Benefit seen
 - Medical mx
 - PCI
 - CABG subset
- 20% reduction ischemic outcomes
- Major bleed increased: 2.7% vs. 3.7%

13,608 patients with high-risk ACS (STEMI, NSTEMI)

Prasugrel 60 mg LD, 10 mg daily vs. clopidogrel 300 mg LD, 75 mg daily

Randomization was performed after coronary anatomy was defined

1-year efficacy: death from CV cause, MI or stroke

Hazard ratio: 0.81; 95% CI: 0.73–0.90; *P* < 0.001; NNT 46

Cardiovascular death/non-fatal myocardial infarction/non-fatal stroke

Hazard ratio: 1.32; 95% CI: 1.03–1.68; *P* = 0.03; NNH 167

Major non-CABG bleeds

Wiviott et al NEJM 2007
History of Stroke or TIA

<table>
<thead>
<tr>
<th></th>
<th>Prasugrel</th>
<th>Clopidogrel</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HISTORY OF TIA/STROKE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td>19.1</td>
<td>14.4</td>
<td>0.15</td>
</tr>
<tr>
<td>Bleeding</td>
<td>5.0</td>
<td>2.9</td>
<td>0.06</td>
</tr>
<tr>
<td>Net</td>
<td>23.0</td>
<td>16.0</td>
<td>0.04</td>
</tr>
<tr>
<td>NO HISTORY OF TIA/STROKE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td>9.5</td>
<td>12.0</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Bleeding</td>
<td>2.3</td>
<td>1.8</td>
<td>0.08</td>
</tr>
<tr>
<td>Net</td>
<td>11.8</td>
<td>13.8</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Age ≥ 75, Weight < 60 kg, or History of TIA/stroke</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Efficacy</td>
<td>16.1</td>
<td>16.0</td>
<td>0.83</td>
</tr>
<tr>
<td>Bleeding</td>
<td>4.3</td>
<td>3.3</td>
<td>0.10</td>
</tr>
<tr>
<td>Net</td>
<td>20.2</td>
<td>19.0</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Wiviott et al NEJM 2007
Prasugrel in medically managed ACS

TRILOGY ACS
9326 patients

ACS: + troponin or ST depression

Medically managed ACS within 10 days of the index event

Prasugrel 30 mg LD and 10 mg daily*
Clopidogrel 300 mg LD and 75 mg daily
Randomization was performed after coronary anatomy was known.

No benefit of upstream initiation of prasugrel in NSTEMI (ACCOAST trial).
ACS: STEMI and non-STEMI

- Ticagrelor 180 mg LD 90 mg bid
- Clopidogrel 300 mg LD 75 mg

- 1^e efficacy: death from vascular case, MI or stroke at 1-year
 - MI alone
 - All-cause death and vascular death
 - No increase in primary bleeding
 - Increase in non-CABG bleeding, and fatal ICH

Wallentin L et al. NEJM 2009
Ticagrelor

- Only drug to demonstrate a reduction in all-cause mortality
- Benefit of ticagrelor seen in patients treated medically and with PCI
- Patients were pre-treated with ticagrelor prior to arrival to the cath lab
- Interaction with dose of aspirin – higher dose of aspirin was associated with reduced efficacy of ticagrelor
Metabolism of P2Y12 inhibitors
Clopidogrel Dose Response Variability

Cellular factors:
- Increased platelet turnover
- Decreased metabolic activity
- Up-regulation of P2Y_{12} or P2Y_{1}
- Up-regulation of P2Y-independent pathways

Genetic Factors:
- CYP polymorphisms
- GPIa polymorphisms
- PY2_{12} polymorphisms
- GPIIIa polymorphisms

Clinical factors:
- Age
- Compliance
- Under-dosing
- Poor absorption
- Drug interactions
- ACS
- Diabetes
- BMI

Reduced response to clopidogrel
CLOPIDOGREL VS. PRASUGREL

Response to Prasugrel

Response to Clopidogrel

Clopidogrel Responder

Clopidogrel Non-responder

*Responder = ≥25% IPA at 4 and 24 h

Brandt JT et al Am Heart J. 2007
Popular GENETICS trial

- 2488 STEMI patients undergoing Primary PCI
- **Standard therapy** (ticagrelor or prasugrel)
- **Genotype-guided therapy** (ticagrelor or prasugrel for carriers, clopidogrel for non-carriers)
- 1^0 efficacy: death, MI, stroke, stent thrombosis, major bleeding
- 1^0 bleeding: PLATO major or minor bleeding

Classens et al NEJM 2019
ISAR-REACT 5

Ticagrelor vs. Prasugrel

- 4018 patients with ACS
- Ticagrelor 180 mg LD and 90 mg bid
- Prasugrel 60 mg LD and 10 mg daily*
- No pre-treatment with prasugrel for UA/NSTEMI
- Funded by German Center of CV Research

Death, MI or stroke – Primary efficacy endpoint

Bleeding – Primary Safety Endpoint

Hazard ratio, 1.12 (95% CI, 0.83–1.51)
\(P=0.46 \)

No. at Risk

<table>
<thead>
<tr>
<th></th>
<th>Ticagrelor</th>
<th>Prasugrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1989</td>
<td>1773</td>
</tr>
<tr>
<td>2</td>
<td>1441</td>
<td>1465</td>
</tr>
<tr>
<td>4</td>
<td>1399</td>
<td>1427</td>
</tr>
<tr>
<td>6</td>
<td>1356</td>
<td>1397</td>
</tr>
<tr>
<td>8</td>
<td>1319</td>
<td>1357</td>
</tr>
<tr>
<td>10</td>
<td>1296</td>
<td>1333</td>
</tr>
<tr>
<td>12</td>
<td>1266</td>
<td>1307</td>
</tr>
</tbody>
</table>

Schupke et al NEJM 2019
Cangrelor

- Intravenous
- Onset of action: 2 min
- $T_{1/2}$: 3-5 min
- Completely reversible within 1 hour

CHAMPION-PHOENIX study
- ACS, stable angina undergoing PCI
- Compared 2 hour cangrelor vs. oral therapy
- Significant reduction in ischemic events and stent thrombosis

Role in patients with surgical disease where interruption of P2Y12 inhibitor may be considered harmful

Bhatt et al. NEJM 2013
Glycoprotein IIb/IIIa

Abciximab (RheoPro)
- Monoclonal antibody
- High affinity, rapid onset of action
- Effect reversed within 12-24 hours
- Bleeding, thrombocytopenia
- Platelet transfusion

Eptifibatide (Integrellin) & Tirofiban (Aggrastat)
- Small molecule inhibitors
- Bolus dose followed by infusion
- Renally cleared, contraindicated in dialysis
- Effect lasts 2-4 hours

High clot burden
Patients not pre-treated with P2Y12 inhibitors
Anti-thrombotic therapy

Class I: Anti-coagulation recommended for all patients

Heparin

- UFH- unfractionated heparin
- LMWH- enoxaparin
 - Ok to use, but ACT may not be reliable. Repeat dosing if last dose was >8 hours ago

Alternative agents- (lower risk of bleeding)

- Fondaparinux (anti-Xa)
 - Not used often for invasively managed patients due to concerns for guide catheter thrombosis

- Bivalirudin (anti-IIa)
Bivalirudin

- Direct thrombin inhibitor (not dependent on ATIII)

- HORIZONS-AMI (STEMI) and ACUITY (NSTEMI)
 - compared bivalirudin to combination of heparin + GPI (era of lower pre-treatment with P2Y12)
 - predominant benefit was reduction in bleeding

- Heat PPCI (STEMI Patients)
 - Predominantly radial access
 - No routine use of GPI
 - Heparin was more effective in reducing MACE (5.7% vs. 8.7%), and had similar bleeding
 - 3x fold increased risk of acute stent thrombosis with bival
ACS Medical Management

<table>
<thead>
<tr>
<th>Oxygen</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>For O2 saturation <90%, respiratory distress, or hypoxemia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrates</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sublingual every 5 min × 3 for continuing pain</td>
<td></td>
</tr>
<tr>
<td>IV for persistent ischemia, heart failure, or uncontrolled hypertension</td>
<td></td>
</tr>
<tr>
<td>Nitrates are contraindicated with recent use of a PDE5 inhibitors</td>
<td>III</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analgesic Therapy</th>
<th>IIb</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV Morphine may be reasonable for continued chest pain despite maximally tolerated anti-ischemic medications</td>
<td></td>
</tr>
<tr>
<td>NSAIDs (except aspirin) should not be initiated and should be discontinued during hospitalization</td>
<td>III</td>
</tr>
</tbody>
</table>
Beta-adrenergic blockers

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate within the first 24 h (in the absence of CHF, low-output state, risk for shock, heart block, active asthma)</td>
<td>I</td>
</tr>
<tr>
<td>Sustained-release Metoprolol Succinate, Carvedilol, or Bisoprolol is recommended with concomitant NSTE-ACS, stabilized HF, and reduced systolic function</td>
<td>I</td>
</tr>
<tr>
<td>Continue in patients with normal LV function with NSTE-ACS</td>
<td>IIa</td>
</tr>
<tr>
<td>IV beta blockers are potentially harmful when risk factors for shock are present</td>
<td>III</td>
</tr>
</tbody>
</table>
IV followed by Oral Metoprolol in STEMI

COMMIT (N = 45,852)

- **Death**
 - Placebo: 1797 deaths (7.8%)
 - Metoprolol: 1774 deaths (7.7%)
 - 1% (SE 3) proportional risk reduction (p=0.7)

- **ReMI**
 - Placebo: 8% (SE 1%)
 - Metoprolol: 7% (SE 1%)
 - P=0.002

Totality of Evidence (N = 52,411)

- **Death (any cause)**
 - 26 small trials
 - MIAMI
 - ISIS-1
 - COMMIT (low-risk only)
 - Total
 - Death 13% (P=0.0006)

- **ReMI**
 - 22% (P=0.0002)

- **VF**
 - 15% (P=0.002)

Risk factors for cardiogenic shock
- Heart failure
- Age > 70
- Systolic blood pressure < 120
- Sinus tachycardia > 110 or heart rate < 60
- Increased time since onset of STEMI symptoms

Lancet. 2005;366:1622
Renin-Angiotensin System Inhibitor

- **Class I**
 - ACEI within 24 hours- acute MI, CHF, EF<40%
 - ARB for ACEI intolerance
 - Aldosterone antagonist- AMI patients on ACEI/BB and EF <40% with symptomatic CHF or DM

- **Class II**
 - ACEI reasonable for all patients without contraindications
ACE Inhibitors in AMI

SAVE - EF ≤40% (captopril)
AIRE - clinical CHF (ramipril)
TRACE - EF ≤35% (trandolapril)

Cumulative Mortality

- **Placebo:** 866/2971 (29.1%)
- **ACE-I:** 702/2995 (23.4%)
- **OR:** 0.74 (0.66–0.83)

<table>
<thead>
<tr>
<th>Years</th>
<th>ACE-I</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2995</td>
<td>2971</td>
</tr>
<tr>
<td>1</td>
<td>2250</td>
<td>2184</td>
</tr>
<tr>
<td>2</td>
<td>161</td>
<td>1521</td>
</tr>
<tr>
<td>3</td>
<td>892</td>
<td>853</td>
</tr>
<tr>
<td>4</td>
<td>223</td>
<td>138</td>
</tr>
</tbody>
</table>
Aldosterone Blockade Post-MI

Randomized 3-14 d. post MI:
Eplerenone (titrated 50mg daily) vs. placebo
Cholesterol management

<table>
<thead>
<tr>
<th>Action</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate or continue high-intensity statin therapy in patients with no contraindications</td>
<td>I</td>
</tr>
<tr>
<td>Obtain a fasting lipid profile, preferably within 24 h</td>
<td>IIa</td>
</tr>
</tbody>
</table>

Statin therapy

Age <75 (high intensity):
- Atorvastatin 40-80 mg daily
- Rosuvastatin 20-40 mg daily

Age >75 (moderate intensity):
- Atorvastatin 10-20 mg daily
- Rosuvastatin 5-10 mg daily
- Simvastatin 20-40 mg daily
- Pravastatin 40-80 mg
~10,000 patients (40% ACS); completed 1-year of DAPT after coronary DES
Extended DAPT with extended dual antiplatelet therapy for 12 months

Mauri et al. NEJM 2014

Table 3. Bleeding End Point during Month 12 to Month 30.

<table>
<thead>
<tr>
<th>Bleeding Complications</th>
<th>Continued Thienopyridine (N=4710)</th>
<th>Placebo (N=4649)</th>
<th>Difference</th>
<th>Two-Sided P Value for Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no. of patients (%)</td>
<td></td>
<td>percentage points (95% CI)</td>
<td></td>
</tr>
<tr>
<td>GUSTO severe or moderate†</td>
<td>119 (2.5)</td>
<td>73 (1.6)</td>
<td>1.0 (0.4 to 1.5)</td>
<td>0.001</td>
</tr>
<tr>
<td>Severe</td>
<td>38 (0.8)</td>
<td>26 (0.6)</td>
<td>0.2 (-0.1 to 0.6)</td>
<td>0.15</td>
</tr>
<tr>
<td>Moderate</td>
<td>81 (1.7)</td>
<td>48 (1.0)</td>
<td>0.7 (0.2 to 1.2)</td>
<td>0.004</td>
</tr>
<tr>
<td>BARC type 2, 3, or 5</td>
<td>263 (5.6)</td>
<td>137 (2.9)</td>
<td>2.6 (1.8 to 3.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Type 2</td>
<td>145 (3.1)</td>
<td>72 (1.5)</td>
<td>1.5 (0.9 to 2.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Type 3</td>
<td>122 (2.6)</td>
<td>68 (1.5)</td>
<td>1.1 (0.6 to 1.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Type 5</td>
<td>7 (0.1)</td>
<td>4 (0.1)</td>
<td>0.1 (-0.1 to 0.2)</td>
<td>0.38</td>
</tr>
</tbody>
</table>
DAPT Score

Clinical Prediction Variable

Age, y
- ≥75
- 65-<75
- <65

Cigarette smoking
Diabetes mellitus
MI at presentation
Prior PCI or prior MI
Paclitaxel-eluting stent
Stent diameter <3 mm
CHF or LVEF <30%
Vein graft stent
Total score range

Yeh et al JAMA 2015
Triple therapy

- Concomitant indication for long-term anticoagulation
- Triple therapy is associated with a markedly high risk of bleeding and should be minimized as much as possible

Considerations
- Use of bare metal stents
- Discontinuing anticoagulation until DAPT can be completed
- P2Y12 + warfarin (WOEST)
- P2Y12 + 15 mg daily rivaroxaban (PIioneer-AF)
- P2Y12 + apixaban/dabigatran

- Triple therapy for shortest duration
 - Avoid ticagrelor or prasugrel
Summary

- UA/NSTEMI patients represent a heterogeneous group with varying risk of adverse outcomes

- Early risk stratification can be used to tailor treatment intensity with the likelihood of benefit and risk

- Antithrombotics and antiplatelet agents are critical in the management

- Long-term treatment with beta blockers, RAAS blockers, statins and risk factor modification is key
Thank You